News

The opinions expressed in our new items and other published works are those of the author(s) and do not necessarily reflect the opinions of Smart About Salt Council (referred to as SASC) or its Directors, Officers, Volunteer, agents or staff.

All rights reserved. No part of any SASC published work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher.

Information contained in our published works have been obtained by SASC from sources believed to be reliable. However, neither SASC nor its authors guarantees the accuracy or completeness of any information published herein and neither SASC nor its authors shall be responsible for any errors, omissions, or claims for damages, including exemplary damages, arising out of use, inability to use, or with regard to the accuracy or sufficiency of the information contained in SASC publications.

  • 28 Nov 2017 2:06 PM | Smart About Salt (Administrator)

    Through 2016 and beyond and with support from the Province of Ontario, the Smart About Salt Council (SASC) was pleased to be able to review and update its award-winning in-class “Essentials of Salt Management” professional training for winter maintenance contractors and facility owners and operators. In so doing the SASC met a long-understood need to expand its training platform to embrace online delivery.

    Using preferred procurement (request for proposals (RFP), the SASC secured the assistance of qualified vendor to build a stand-alone training Website.

    Those wishing to enroll in SASC online training efforts can register at www.smartaboutsalt.com for any or all of thirteen (13) teaching modules available in either English or French. To complete an online course a fourteenth review and exam module needs to be successfully completed. In-class training (including time for an exam) usually take eight (8) hours but following a successful beta testing period that involved the Lake Simcoe Regional Conservation Authority (LSRCA) students appear to be averaging six and a half (6.5) hours to complete the online course.

    Upon completion registrants receive an email from the training system but should also expect a certificate emailed from Smart About Salt Council.

    Since leading practices in winter maintenance change and SASC is constantly striving to update its efforts “Certified Trained” status is recognized by SASC for three (3) years but can be extended for an additional two (2) years upon successful completion of an online refresher course.

    On behalf of our Members, supporters, stakeholders and collaborators, the Smart About Salt Council would like to thank the Province of Ontario, especially the Minster of the Environment and Climate Change (MoECC) for their collaboration and support in helping Smart About Salt Council to continue to protect freshwater resources in Ontario and beyond by helping industry, government and others adopt leading practice in winter maintenance and reduce their use of chlorides (salts) while maintaining safety.

    To learn more visit www.smartaboutsalt.com or email contact@smartaboutsalt.com.


  • 23 Nov 2017 6:35 AM | Smart About Salt (Administrator)

    https://www.castanet.net/news/BC/212141/Beet-juice-battles-road-ice

    Last year, 500,000 litres of beet juice was sprayed on the Coquihalla Highway.

    The unlikely tool has been used by VSA Highway Maintenance on the notorious mountain pass in an attempt to keep ice at bay.

    Salt brine liquid is used as a preventive measure to keep roads from icing, but it's only effective down to -5 C. When mixed with beet molasses, it lowers the brine's effective temperature down to about -15 C.

    Chuck Gallacher, vice-president of Premium Canada, the Lake Country-based distributor of the beet product, says the Coquihalla has been used as a pilot project for the technology, and it has been adopted by several municipalities this winter.

    The molasses is a byproduct of the process of removing sugar from beets. Premium Canada imports the product from Nampa, Idaho. 

    In addition to lowering the effective temperature of the brine, the sticky molasses helps keep sand and salt on the road. Without the beet additive, Gallacher says 70 per cent of solid products applied to roads ends up bouncing into the ditch.

    Liquid products like magnesium chloride and calcium chloride can be used at temperatures, down to -30 C, but are more expensive than salt brine, and can have environmental consequences if overused.

    “Salt brine is so much cheaper than those other liquids, and so the beet juice piece comes in by being able to supplement your salt brine and basically duplicate the performance of a higher-priced chloride product,” Gallacher said.

    Williams Lake and Merritt have also used beets on their roads, in addition to cities in Ontario and Quebec.

    “It's just being introduced really by us to cities this winter,” Gallacher he said.

    - |

  • 21 Nov 2017 6:54 PM | Smart About Salt (Administrator)

    https://www.muskokaregion.com/news-story/7935685-smart-about-salt-could-force-contractor-certification-in-muskoka/

    MUSKOKA — Anyone applying road salt in Muskoka may soon have to get schooled.

    Dr. Norman Yan, an aquatic ecotoxicologist, and Tim Kearney, a retired contractor, on behalf of the Friends of the Muskoka Watershed have pitched winter salt management program Smart About Salt to receptive engineering and public works committee members at the District of Muskoka.

    The program, created by a not-for-profit council formed by the Region of Waterloo, Landscape Ontario Horticultural Trades Association, the Building Owners and Managers Association of Ottawa and the Ontario Good Roads Association, aims to protect fresh water from winter salt and, among other initiatives, offers a one-day salt awareness and education program to certify those in the snow and ice control business, including contractors, supervisors, property owners, facility managers and more.

    “We all know that millions of tonnes of salt are added to roads, parking lots and other surfaces in Canada,” said Yan. “This happens in Muskoka.”

    He noted salt does not stay in one place — it gets washed into lakes, rivers and other water bodies by rain and melt — and chloride levels in lakes near winter maintained roads and facilities had increased in Muskoka, with levels above 10 milligrams per litre now fairly common.

    And a few sat around 100 mg/L, he said.

    He noted the Canadian water quality guideline for chloride listed 120mg/L as its threshold, which Muskoka lakes sit below.

    But he said that guideline was based on studies done in hard water, rather than Muskoka’s soft water. A 2017 study by Queen’s University toxicologists lowered the maximum safe chloride concentration to 20 mg/L in Muskoka based on the plant and animal life specific to the region, he said.

    “Suddenly, we have a bunch of lakes that are above that 20 mg/L chloride level,” said Yan, before pointing to the district’s strategic priority statements on the natural environment. “We need to really put into practice these words of adopting a culture of environmental protection.”

    The Smart About Salt program, he said, has reduced Aurora’s salt use by 20 per cent and Kitchener-Waterloo’s by 25 per cent without increased cost or liability, as examples.

    Kearney threw his support behind the program.

    The retired contractor said companies often use significant amounts of salt, not only to quickly strip snowy roads to bare pavement, but also to bill clients more.

    Education and penalties were needed, he said.

    “We are putting down way more salt than we need to,” said Kearney. “I completely understand there are other materials out there that could be used and I suggest it’s a culture change that starts right here with our leadership.”

    But he added everyone, including homeowners, had a role to play.

    “They have to understand what salt does,” he said. “This area of the province is the green lung of Ontario. If the lakes get destroyed by chloride, what do we have left?”

    Committee members would debate the program’s adoption in future.

    by Alison Brownlee

    Alison Brownlee is a reporter with the Huntsville Forester. She can be reached at abrownlee@metrolandnorthmedia.com . Follow her on Twitter and Facebook

    Email: abrownlee@metrolandnorthmedia.com Facebook Twitter



  • 21 Nov 2017 6:39 AM | Smart About Salt (Administrator)

    https://ca.yahoo.com/news/canadians-told-brace-apos-classic-090004708.html

    TORONTO — One of Canada's high profile weather forecasters is warning Canadians across the country to brace for a whole lot of snow this winter.

    Chris Scott, The Weather Network's chief meteorologist, says the message from his forecast team is "buckle up, because it looks like a stormy winter."

    Scott says this year's La Nina weather system bears a striking resemblance to that of 2007-2008, when Toronto had its snowiest winter on record.

    "History tells us that when we have cooler waters off the coast of South America, that's La Nina, and those winters tend to be classic Canadian winters."

    British Columbia, the Prairies, Ontario, Quebec and Atlantic Canada are all in store for above normal levels of precipitation, according to the forecast.

    In western Canada, that precipitation will likely be snow as the region shivers in below normal temperatures.

    In Atlantic Canada, where temperatures are expected to be close to above normal, forecasters expect plenty of snow and ice but periods of milder weather and rain will keep snowbanks from getting too high.

    Scott says storms with lots of snow are forecast for December in the eastern half of Canada, while in the western half of the county, the winter conditions are expected to start in January.

    La Nina winters often mean changeable weather, and Scott says that while Canadians can expect to be pounded by numerous snowstorms, there will also be sustained periods of milder weather.

    "You might get two out of three months where you think, 'wow, that was a wild winter,' and then one month where the winter goes away," he explains. "But this will be a winter that's more on than off."

    Scott says Southern Ontario and Quebec might see mild conditions during all of January.  

    The weather pattern also calls for a winter that lingers, meaning the country could experience snowstorms as late as March.

    Scott notes that in the prairies a strong snow pack could benefit soil conditions and help produce a bountiful spring harvest.

    Ski resorts are also anticipating a banner season, especially in western Canada, where the coastal mountains are already getting snow.

    The only region of Canada not following the nation-wide trend is Nunavut, which has seen warming temperatures in recent years due to global warming. Scott says Nunavut can expect warmer than usual temperatures again this winter, along with average levels of snow.

    Salmaan Farooqui, The Canadian Press

  • 20 Nov 2017 8:41 AM | Smart About Salt (Administrator)

    https://www.msn.com/en-ca/weather/topstories/canadians-told-to-brace-for-classic-winter/ar-BBFjXK1?li=AAadgLE&ocid=spartanntp

    TORONTO - One of Canada’s high profile weather forecasters is warning Canadians across the country to brace for a whole lot of snow this winter.

    Chris Scott, The Weather Network's chief meteorologist, says the message from his forecast team is "'buckle up' because it looks like a stormy winter."

    Scott says this year's La Nina weather system bears a striking resemblance to that of 2007-2008, when Toronto recorded its snowiest winter ever.

    "History tells us that when we have cooler waters off the coast of South America, that's La Nina, and those winters tend to be classic Canadian winters."

    British Columbia, the Prairies, Quebec, Ontario and the Maritimes are all in store for above normal levels of precipitation, according to the forecast.

    In western Canada, that precipitation will likely be snow as the region shivers in below normal temperatures.

    But in the Maritimes, where slightly higher temperatures are expected, the precipitation could make for some sloppy conditions.

    Scott says storms with lots of snow are forecast for December in the eastern half of Canada, while in the western half of the county, the winter conditions are expected to start in January.

    La Nina winters often mean changeable weather, and Scott says that while Canadians can expect to be pounded by numerous snowstorms, there will also be sustained periods of milder weather.

    "You might get two out of three months where you think, wow, that was a wild winter, and then one month where the winter goes away," he explains. "But this will be a winter that's more on than off."

    Scott says Southern Ontario and Quebec might see mild conditions during all of January, while some other regions experience shorter breaks in the cold, lasting perhaps a couple of weeks.

    The weather pattern also calls for a winter that lingers, meaning the country could experience snowstorms as late as March.

    Scott notes that in the prairies a strong snow pack could benefit soil conditions and help produce a bountiful spring harvest.

    Ski resorts are also anticipating a banner season, especially in western Canada, where the coastal mountains are already getting snow.

    Advertisement

    The only region of Canada not following the nation-wide trend is Nunavut, which has seen warming temperatures in recent years due to global warming. Scott says Nunavut can expect warmer than usual temperatures again this winter, along with average levels of snow.

  • 17 Nov 2017 10:02 AM | Smart About Salt (Administrator)

    https://www.straight.com/news/996496/henry-flanagan-another-cold-winter-ahead-vancouver-needs-rethink-road-salting

    By Henry Flanagan

    Last winter, more than 60 centimeters of snow blanketed Vancouver between December and March. The heavy snowfalls and sustained cold temperatures caused chaos throughout the city: vehicles slid and crashed on icy streets; transit was rerouted and delayed; and residents struggled to keep their driveways and sidewalks cleared.

    Last year’s winter weather was highly unusual for the Lower Mainland, and cities and residents struggled to cope. Part of Vancouver’s response was to spread large quantities of salt over roads in the city. The city purchased an unprecedented volume of salt, more than 9,000 tons, for de-icing, spending more than a million dollars in the process. In contrast, the city purchased less than 1,000 tons of salt in 2015-2016.

    Salt (sodium chloride) has a unique property of lowering the freezing point of snow and ice. This causes ice to melt at lower temperatures than it would normally, which is why salt is commonly spread on roads and sidewalks.

    On the surface, the practice of salting appears to be a safe and responsible way of dealing with snowy and icy surfaces. Why else would the city of Vancouver have used so much of it last winter?

    However, researchers have identified significant environmental damages that are caused by road salting. Stuart Findlay and Victoria Kelly of the Cary Institute of Ecosystem Studies have studied how salt from roads runs off into nearby bodies of water such as streams and lakes, or seeps into groundwater. Their studies show that this can lead to lethal concentrations of salt for various types of fish, insects, and trees.

    Even in nonlethal amounts, salt runoff can cause harm by affecting the life cycles of aquatic organisms and increasing dispersion of heavy metals in soils. There are also concerns for human health: salt runoff can potentially contaminate aquifers that are used for drinking water.

    So, what alternatives exist to salting roads? Sand is already heavily used by the city, with thousands of tons used in the last few months of 2016 alone. Sand does little to melt snow and ice but increases traction and makes walking and driving safer. Additionally, other deicing salts, such as calcium chloride, have higher costs but may have a reduced environmental impact.

    Some cities are even exploring organic deicers like molasses and cheese brine, which can help melt ice with fewer potentially harmful chemicals. Although many options exist, some degree of road-salting is necessary to increase safety in extreme winter events, and alternatives are intended to reduce the quantity of salt needed rather than fully replacing it.

    The City of Vancouver should further explore ways in which it can limit the amount of salt used on roads during winter in order to minimize the damages that it causes. Vancouver prides itself on being a "green" and sustainable city, and these values shouldn’t be thrown out during winter storms—even if they happen infrequently.

    Rather than having a reactionary response to snowfall like last winter’s, the city needs to have a plan in place for exceptional snow and ice events so that it is not forced to spend huge sums on emergency shipments of ecologically harmful salt. This could include better study and utilization of salt alternatives for deicing, more planning to increase the efficiency of salt that is used, and improved snow tires and chains for public transit.

    By researching and investing in road-salt reduction now and better preparing for future heavy snowfalls, the City of Vancouver could help the environment and save taxpayer money. And with Environment Canada forecasting another colder-than-average winter, this should happen sooner rather than later.

    Henry Flanagan is a fourth-year undergraduate student at the University of British Columbia majoring in geography with a specialization in environment and sustainability.


  • 10 Nov 2017 10:49 AM | Smart About Salt (Administrator)

    The Region of Waterloo, Ontario has produced and made available a video on preventing ice before it occures. To view please go to https://youtu.be/LAw6i1kOUhY.

    This video is part of a three (3) part series that can be fully accessed along with a worksheet at www.regionofwaterloo.ca/winterplan.

  • 10 Nov 2017 10:48 AM | Smart About Salt (Administrator)

    The Region of Waterloo, Ontario has produced and made available a video on the contract basics related to winter maintenance. To view please go to https://youtu.be/pVctfQPUycM.

    This video is part of a three (3) part series that can be fully accessed along with a worksheet at www.regionofwaterloo.ca/winterplan.

  • 10 Nov 2017 10:46 AM | Smart About Salt (Administrator)

    The Region of Waterloo, Ontario has produced and made available a video on winter maintenance. To view please go to https://youtu.be/ex7lt3lp2Wk.

    This video is part of a three (3) part series that can be fully accessed along with a worksheet at www.regionofwaterloo.ca/winterplan.


  • 07 Nov 2017 7:58 AM | Smart About Salt (Administrator)

    https://ensia.com/features/road-salt/

    If you live — and drive — in a northern or mountainous climate, you’ve seen highway trucks spreading loads of rock salt on snowy highways to melt the ice. But where does the salt go?

    A lot of it ends up in our lakes and streams. A recent study of 371 lakes in North America — most in the northern states and southern Canada — showed chloride concentrations rising in more than a third. More than two dozen were nudging toward levels harmful to aquatic life. Extrapolated to all lakes in the U.S. northern Great Lakes and Northeast regions, about “7,770 lakes may be experiencing elevated chloride concentrations, likely due to road salt runoff,” the study concludes.

    U.S. road maintenance departments have been spreading salt on streets and highways to melt snow and ice since the 1940s, but the use of salt skyrocketed over time — from 0.15 metric tons (0.16 tons) per year during the 1940s to about 18 million metric tons (19.8 million tons) per year today. Road salt use is common and growing throughout Canada, Europe, Japan, China and even South America. As much as 60 million metric tons (66 million tons) may be applied worldwide each year. Unlike chemicals that break down into less harmful compounds, road salt persists and may remain in water and soil for years, until it eventually is diluted and carried away by moving water.

    Despite the ever-greater use, road salt’s effects on streams, lakes and groundwater have been largely ignored until recently. As recently as 2014, when biologist Rick Relyea began studying the effects of salt-laden runoff at Rensselaer Polytechnic Institute, “the world of science didn’t pay very much attention to the impacts of road salt on water,” he says. “Now we’re paying much more attention.”

    Recent research is showing that in many waterways, chloride is on a persistent upward trend, with potential to harm aquatic communities and even impair drinking water.

    Neither Relyea nor other researchers suggest highway salting crews should sacrifice public safety for the sake of healthy streams and lakes, but they say there are ways to cut salt use without impairing winter road maintenance.

    Same Old Salt

    To melt ice and prevent the accumulation of new ice on winter roads, highway crews apply salt. In the U.S., salt use is heaviest in the Midwest, Great Lakes region, New England, Alaska and the northern Appalachians. Road salt is mostly sodium chloride, the same stuff you sprinkle on food, but in coarse granular form. When it dissolves in slush it lowers the freezing point, causing ice to melt. For the same reason, salt is spread on sidewalks and parking lots.

    More expensive alternatives, such as magnesium chloride and calcium chloride, work better at temperatures below 15 °F (–9.4 °C). “But they still have chloride, so theyre not any better for the environment,” says Brooke Asleson, metro area watershed project manager for the Minnesota Pollution Control Agency (MPCA).

    Chloride is the component of salt of greatest concern for aquatic life. Chloride has been shown to be benign at low concentrations, but as concentrations increase salt can kill plankton, disrupt aquatic communities, increase algae blooms and stunt fish. The U.S. Environmental Protection Agency has set a long-term threshold for aquatic life of 230 milligrams per liter. Canada’s guideline for long-term exposure is 120 mg/liter. (For comparison, seawater has a chloride concentration of nearly 20,000 mg/liter.)

    “Just that contrast makes you realize we dont have a good idea of what concentrations are really harming our environments,” says Hilary Dugan, assistant professor at the University of Wisconsin–Madison Center for Limnology and lead author of the North American lakes study, published this spring in the Proceedings of the National Academy of Sciences.

    In many cases, the U.S. and Canadian thresholds are already being exceeded. Keeping freshwater “fresh,” according to Dugan’s paper, “is critically important for protecting the ecosystem services freshwater lakes provide, such as drinking water, fisheries, recreation, irrigation, and aquatic habitat.”

    Toll on Waterways

    Dugan’s paper tracks long-term chloride concentrations in North American lakes with detailed available records. Most were in what researchers called the “North American Lakes Region,” which includes Connecticut, Maine, Massachusetts, Michigan, Minnesota, New Hampshire, New York, Ontario, Rhode Island, Vermont and Wisconsin.

    Mean chloride levels ranged from hardly any at all to 240 mg/liter, above both U.S. and Canadian standards. About 10 percent in the lakes region exceeded 100 mg/liter. And perhaps most concerning, slightly more than a third of the lakes overall showed persistent upward trends in chloride concentrations.

    Dugan attributes the increased levels to factors such as more roads, bigger roads, more traffic, and more parking lots. The lakes with the greatest long-term concentration of chloride were those with the greatest proportion of impervious surfaces, such as roads and parking lots, in their watersheds. But it didn’t take a lot — as little as 1 percent road surface within a half-kilometer (third of a mile) of the water body. “It was a surprisingly small percentage of impervious surface that led to long-term increases in chloride,” says Dugan. “I’m not sure that anyone expected that percentage to be so low.” According to her study, 27 percent of large lakes in the United States have more than 1 percent impervious surfaces nearby.

    Much of the salt runs off these surfaces shortly after it’s applied or with spring melt. But some of it seeps into soil, creating a “reservoir for chloride,” Dugan says. “Even if we stopped applying road salt today, theres a high likelihood that chloride levels [in lakes] would continue to increase for awhile as some of those chlorides flush out of soils.”

    Dugan’s big-picture look at North American lakes squares with Asleson’s finer-grained analysis of Minnesota’s Twin Cities, in which 19 lakes currently exceed the water-quality standard for chloride. And chloride concentrations were increasing in most Twin Cities lakes.

    “When you have a watershed area that has a road density of 18 percent or greater [in the entire watershed], that’s where you’re most likely to see water quality problems because of winter deicing salt,” says Asleson.

    Trophic Cascades

    While chloride is not yet poisoning our waterways, chloride does have the potential to change aquatic communities, stunt fish growth, aid exotic species and even affect tourism.

    Rick Relyea is director of Rensselaer’s Jefferson Project at Lake George, a deep, clear 32-mile (51.5-kilometer)-long finger of water in northern New York. Relyea and colleagues monitor the lake and conduct experiments in artificial habitats to determine the effects of chloride and other components of salts on aquatic life.

    “When some activity like road salt harms one species, it’s usually not the end of the story,” says Relyea. “It indirectly affects a lot of other species.”

    In Relyea’s study, high road salt concentrations induced a “trophic cascade,” reducing zooplankton and producing an upsurge in their food, phytoplankton, which seemed to thrive in the high salinity.

    Relyea’s team also found that exposure to salt drove zooplankton evolution toward salt tolerance. “Those zooplankton populations that were knocked down by a lot of salt actually bounced back and started doing really well,” he says. That tolerance was passed on to subsequent generations. “That’s really the hopeful message,” he says. “Its not that we should ignore the issue. Its hopeful that we could buy some time until we solve the issue.”

    In another study, tadpoles raised in salty water became male rather than female frogs at a 10 percent greater rate than expected. The team doesn’t understand the underlying mechanism, says Relyea, but “the explanation is clearly that we have converted some of the females into anatomical males while they are tadpoles.”

    Relyea found that salt levels in Lake George are rising but are still far too low to impair aquatic life. Streams in the watershed are a different story. Chloride concentrations spike to levels 100 time greater that those found in lakes, and remain high through the year as chloride leaches from soils. “Thats probably true throughout the northern U.S. and Canada,” Relyea says.

    Other research has shown that salt can affect trout growth. Calcium chloride had the greatest effect of common road salts, at chloride concentrations of 860 to 3,000 mg/liter. The effect was greatest at the highest concentration, reducing weight of rainbow trout by more than 30 percent. “If you grow more slowly, you can be more susceptible to predators, it will take you longer to be reproductive, you will lay fewer eggs,” says Relyea. “Growth for a fish is everything.”

    Relyea says the sodium in salt can trigger the release of other metals from soil that run into waterways. Released calcium can favor some species over others. “Now you make it easier for some invasive species, like say Asian clams, zebra mussels, various snails — you make it easier for them to get a foothold if they ever arrived in your lake,” he says.

    Road salt also damages and kills vegetation, though the effects are concentrated within 200 feet of roadways.

    High salt use can cause problems for humans, too. Salt seeps into groundwater, raising the salinity of drinking water. In Madison, Wisconsin, where Dugan lives, “Thats a huge concern for municipalities and water treatment plants,” she says. And according to research by the EPA and U.S. Geological Survey, high chloride increases the corrosion of poisonous lead from old water pipes.

    Low-Salt Solutions

    Researchers have experimented with salt substitutes such as beet juice, which lowers freezing temperature and melts ice as the sugar it contains dissolves on the road. But the sugar is a fertilizer that feeds algae growth.

    “In most lakes, we already have enough nutrients going in, particularly in clear, infertile lakes. Theyll be more green and less transparent and less aesthetically pleasing to most people,” says Relyea. “The less transparent the water becomes, the less valuable the attraction to tourists and the less income that comes into communities.”

    Many states regulate road salt storage. But many do not. And none specifically regulates the application of road salt, says Asleson. Instead, road maintenance departments are encouraged to use best management practices. New Hampshire offers a voluntary certification and training program for private applicators maintaining large surfaces such as parking lots. Likewise, Canada has developed a “code of practice” for road salt use.

    The MPCA has created a web-based tool for public works departments and other winter maintenance pros to help evaluate their own programs, from small details (Do they overfill their salt and sand trucks?) to big issues (Do they stockpile road salt outside?). “Weve looked at every aspect that we could with this core group of winter maintenance experts to find every opportunity possible to reduce salt use,” Asleson says.

    Asleson thinks the biggest single change to use less salt is switching to liquid solutions. The brine spreads more evenly, stays put and begins working immediately because the salt is already in solution. As a result, spraying liquid brine is more effective while using less salt. Asleson says cities that have switched to tanker trucks have reduced salt use by up to 70 percent and paid back their equipment investment in a year or two.

    In northern New York, Relyea says, local governments have been adopting so-called live-edge plows. The plow blade, rather than being solid, is divided into short independently moving sections that follow the contours of the road and better remove snow and ice. That leaves less ice to be removed by chemicals, reducing salt usage. “You still salt, but you dont salt as much,” he says.

    “The salt issue is biologically very complex, but I think it has motivated people to think about how we can simultaneously have safe roads and healthy ecosystems,” says Relyea. “If communities could have the ability through technology to purchase less salt, to salt fewer times, pay less truck driver time and help their lakes that are big tourist attractions, it really can be a win-win for everybody involved. It’s not really about posing the health of ecosystems against public safety.”

    Greg Breining Journalist and author


© Smart About Salt Council.  Smart About Salt is a trademark and the Smart About Salt logo is a registered trademark of the Smart About Salt Council.


Powered by Wild Apricot Membership Software